

"Ihre kommunale Solarkampagne"

29.03. 2022

Referent:

Andreas Wöll

Erneuerbare Energien

Themenfeld Energie

Beratungsstelle dezentrale Energieerzeugung

www.lea-hessen.de

Hinweise zur Nutzung von Solarenergie in der Praxis

Vor-Ort-Aufnahme:

Erfassungsbogen für die Vor-Ort-Aufnahme:

O Ja - Bitte Konstruktionsmaße in gesonderter Skizze angeben.

O Nein

	- Allyemenie Daten -	HESSEN 🥕 🦫	3-Anl:
		LANDES ENERGIE AGENTUR	4-Moo
Abmessungenm Breite x _	m Höhe		5-Gel
Anzahi: Stk.			6-Net
Neigung:			7-Fina
Ausrichtung:			
			1
O BALKONBRÜSTUNG			
	Untergrund Aufbau:		1.1
17 *1	O Mauenwerk - Putz O Mauenwerk – Dämmung - Putz		Auftra
ا ام	O Naturstein O Klinker		Straß
1881 ₌₌	O Holz		PLZ/0
<u> </u>	O Metall O Andere		Telefo
	OAIDELE		E-Mai
Montagehöhe OK:m			Projel
Abmessungenm Breite x _	m Höhe		Archit
Anzahl: Stk.			Elektr
Neigung : 0			Ausfü
Ausrichtung:			Gepla
Tragkonstruktion bekannt:			Netzb
O Ja - Bitte Konstruktionsmaße in	gesonderter Skizze angeben.		Anlag
O Nein			-
			1.2
O VORDACH			O Ja
	Untergrund Aufbau: O Mauerwerk - Putz		O Zei
	O Mauerwerk - Putz O Mauerwerk - Dämmung - Putz		O Gru
	O Naturstein O Klinker		O Sch
	O Holz		O Ans
	O Metall O Andere		O Lag
	O Paladare		O Fot
Montagehöhe OK:m			Oru
Abmessungenm Breite x _	m Höhe		
Anzahl: Stk.			
Neigung			
Ausrichtung:			
Tragkonstruktion bekannt:			

ERFASSUNGSBOGEN - GEBÄUDEINTEGRIERTE PV

1-Allgemeine Daten

2-Ausführungsform bei Auftraggeber der öffentlichen Hand

agenausführung

bäudeinformation

tzeinspeisung

anzierung

ALLGEMEINE DATEN

Proiektdaten

ggeber:

on / Telefax:

ktstandort

roarbeiten: ührende Firma:

anter Ausführungstermin: etreiber:

enbetreiber:

Zur Verfügung stehende Unterlagen:

ichnungen

undriss

hnitte

sichten

geplan

Ausführungsform	hai Auftraggabara	der öffentlichen Hand

- Welches Modell zur Ausführung der PV-Anlage ist geplant?
- Offentliche Hand als Betreiber
- EVU als Betreiber

Ist der EVU ein Betrieb der Gemeinde / Stadt

O Nein

Verpachtung / Vermietung von öffentlichen Dächer

0 Teilhaberschaft an PV-System

Bürgeranlage 0 Förderverein

ANLAGENAU SFÜHRUNG

Vorgesehene Montageart der PV-Anlage

Abkz: OK: Oberkante UK : Unterkante

AUFDACH-Installation

O Ziegeldach Welche Ziegelart? O Wellplattendach Metall, Eternit oder andere: O Flachdach

Unbegrünt

 Foliendach Kiesschüttung Sonstiges

O Ziegeldach Welche Ziegelart? O Wellplattendach Metall, Eternit oder andere: O Andere

O SONNENSCHUTZ

Untergrund Aufbau: O Mauerwerk - Putz O Mauerwerk - Dämmung - Putz O Naturstein O Klinker O Holz O Metall. O Andere

Montagehöhe OK:

Was sollte man noch prüfen?

- Solarthermie:
 - Statik des Daches (z.B. Zustand der Balken)
 - Mögliche Wege für Verrohrung (z.B. Kamin mit Mehrfachzug?)
 - Platz f
 ür W
 ärmespeicher und Solarstation
 - Zugänglichkeit
 - Etc.

- PV:
 - Statik des Daches (z.B. Zustand der Balken)
 - Möglicher Weg für die Verkabelung
 - Zugänglichkeit
 - E-Check
 - Blitzschutz
 - Überspannungsschutz
 - Evtl. Einsatz eine E-Speichers
 - Etc.

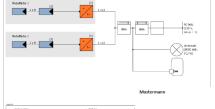
Nutzung der Solarenergie im privaten Bereich

Photovoltaik im privaten Wohnbau

LEA HESSEN

Simulations software Sinn oder Unsinn? (PV & ST)

- Ermöglicht technische Prüfung und Auslegungshilfe
- Ermöglicht wirtschaftliche Überprüfung
- Über Varianten-Gegenüberstellung wird eine Entscheidungshilfe zur Verfügung gestellt
- Zeigt Seriosität des anbietenden Unternehmens
- Ein anerkanntes und mittlerweile etabliertes Tool gehört zur Grundausstattung



Ergebnisse der Jahressimulation		
Installierte Kollektorleistung:		3,790 kW
Installierte Kollektorfläche (Brutto):		7,84 m²
Einstrahlung Kollektorfläche (Bezug):	8.613,31 kWh	1.232,23 kWh/m2
Abgegebene Energie Kollektoren:	4.203,95 kWh	601,42 kWh/m ²
Abgegebene Energie Kollektorkreis:	3.177,56 kWh	454,59 kWh/m²
Energielieferung Trinkwarmwassererwärmung:	:	2.920,87 kWh
Energie Solarsystem an Warmwasser:		2.928,23 kWh
Zugeführte Energie Zusatzheizung:		1.940,7 kWh
Einsparung Erdgas H:		347,2 m³
Vermiedene CO2-Emissionen:		734,12 kg
Deckungsanteil Warmwasser:		60,1 %
Relative Zusatzenergie-Einsparung (DIN EN 12977):		58,2 %
Euctomputzungcaradı		24 0 0%

Anlage	
Bezugsfläche:	6,99 m
Ertrag des Systems:	2.928,23 kWh
Jährl. Brennstoffeinsparung:	347,2 m³ Erdgas H
Wirtschaftlichkeitsparameter	
Lebensdauer:	20 Jahre
Kapitalzins:	2,0 %
Wiederanlagezins:	2,0 %
Preissteigerungsrate Energiebezug:	2,0 %
Preissteigerungsrate Betriebskosten:	1,0 %
Finanzierung	
Gesamtinvestition:	2.796 €
Zuschüsse:	1.005 €
Fremdkapital:	0 €
Restinvestition:	1.791 €
Betriebskosten im ersten Jahr:	53 €
Einsparungen im ersten Jahr:	208 €
Wirtschaftlichkeit	
Solare Gestehungskosten:	0,057 €/kWl
Kapitalrückflusszeit:	10,3 Jahre
Amortisationszeit:	11,6 Jahre
Rentabilität	
Gesamtkapitalrendite:	217,4 %
Eigenkapitalrendite:	217,4 %
Interner Zinsfuß, IRR:	8,10 %
Kapitalwert:	1.344 €
Wiederanlageprämisse	
Gewinn:	2.868 €
Modifizierter interner Zinsfuß, MIRR:	4,90 %

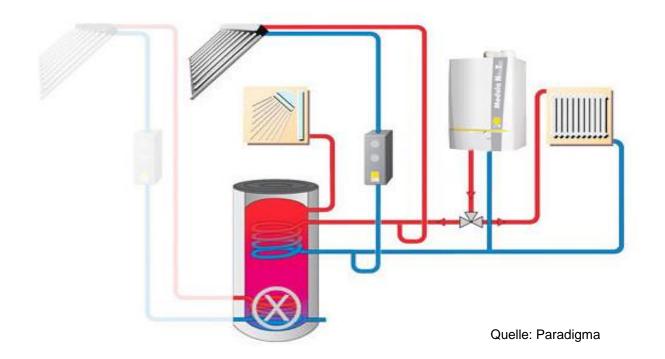
Mustermann

Projektübersicht		
PV-Anlage		
Netzgekoppelte PV-Anlage mit elektrisc	hen Verbrauchern und thermischem System	
Klimadaten	Wiesbaden Mitte, DEU (1995 - 2012)	
Quelle der Werte	DWD	
PV-Generatorleistung	5,4	kWp
PV-Generatorfläche	30,2	m²
	30,2 18	m²

() Nederlife	(g. PVMed	
	(U cares, ser no - 5 no coyama, ser no	Ertragsprognose
tome der Moduffliche Moduffliche I	WA Zweithzegelitär	Ertragsprognose
Artificial (107, Separa) 107	PV-Generator	PV-Generatorleistung
Analit a littings sti. PEHobis		Spez Jahresertrag

ragsprognose		
-Generatorleistung	5,40	kWp
ez. Jahresertrag	1.086,17	kWh/kWp
lagennutzungsgrad (PR)	86,90	%
-Generatorenergie (AC-Netz)	5.883	kWh/Jahr
lirekter Eigenverbrauch	2.725	kWh/Jahr
leizstab	1.614	kWh/Jahr
bregelung am Einspeisepunkt	0	kWh/Jahr
letzeinspeisung	1.545	kWh/Jahr
enverbrauchsanteil	73,7	%
rmiedene CO ₂ -Emissionen	2.757	kg/Jahr

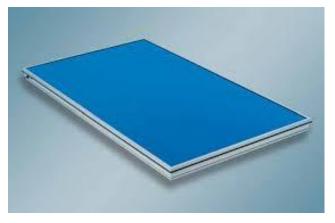
Thermisches System

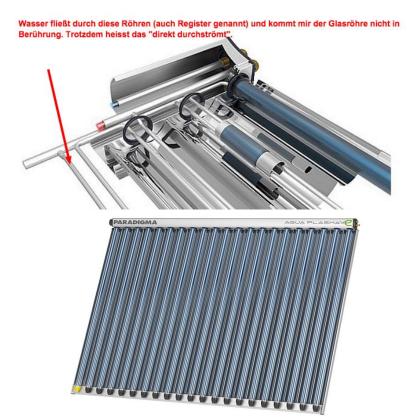

Wärmebedarf Gesamt	8676	kWh
Heizbedarf	6676	kWh
Warmwasserbedarf	2000	kWh
Beheizte Fläche	125	m²
Spezifischer Wärmebedarf	69	kWh/m²
Speicher: Volumen	300	Liter
Heizstab: Maximale Leistung	3	kW
Kessel: Art des Kessels	Gas	

Wirtschaftlichkeit

inr Gewinn	
Gesamte Investitionskosten	8.100,00 €
Mindestlaufzeit der Anlage	14,0 Jahre
Stromgestehungskosten	0,1034 €/kWh
Bilanzierung / Einspeisekonzept	Überschusseinspeisung

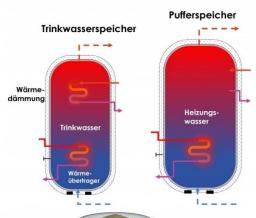
LEA HESSEN LANDES ENERGIE AGENTUR

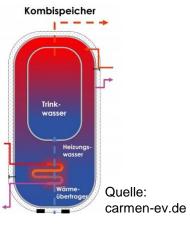

Varianten einer solarthermischen Anlage:

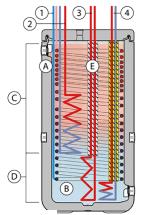


LEA HESSEN LANDES ENERGIE AGENTUR

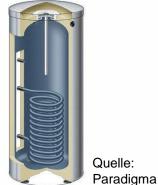
Unterscheidung Flachkollektor - Vakuumröhrenkollektor

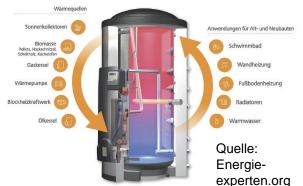


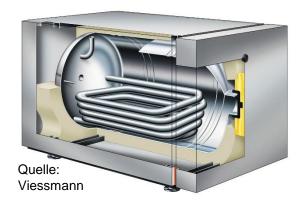




ST: Speichersysteme

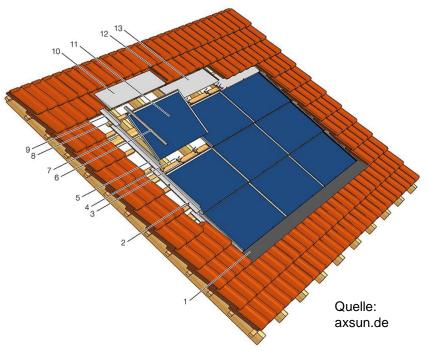





ROTEX Sanicube Solaris SCS 538/16/0-P

- A Speicherbehälter
- B Druckloses Speicherwasser
- C Brauchwasserzone
- D Solarzone
- E Heizungsunterstützungszone
- 1 Trinkwasser
- 2 Speicherladung
- 3 Heizungsunterstützung
- 4 Solaris-Anschluss

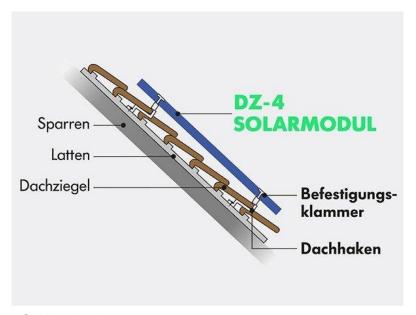
Quelle: Rotex (Daikin)



ST: Indach-/ Aufdach-Installation

PV: Modulvarianten

- Si-Module (Mono/Poly)
- Dünnschicht
- Double-/Triple-Junction
 Module etc.
- Organische Zellen
- Flexible Module
- Etc.



Quelle: photovoltaikmeister.ch

PV: Indach-/ Aufdach-Installation

Quelle: dz-4.de Quelle: solarenergie.de

PV: Sonderanwendungen

Überdachung:

- Beachte: Überkopfsverglasung

Fassadenanlage:

- Warmfassade
- Kaltfassade

Quelle: bba-online.de

PV: Unterscheidung nach Anwendungsfall:

- Standard-PV
- Freiflächen-PV
- APV
- Floating PV
- Stadtmöblierung
- Designelement
- Funktionsmodul (Camping/Boot/Fahrzeuge)
- Insellösung
- Minilösung (Bsp. Taschenrechner etc.)
- Power to X (Bsp. H₂)

ST: Unterscheidung nach Anwendungsfall:

- WWB
- WWB + Heizungsunterstützung
- Solare Nahwärmeversorgung
- Solare Prozesswärme
- Sonderanwendungen:
 - Solar unterstütze Kühlung
 - Solar unterstützte Wasseraufbereitung

Solarthermie:

- Fachgerechte Verlegung der Verrohrung
- Fachgerechte Auslegung der sicherheitsrelevanten Bauteile (z.B. ADG, ÜDV)
- Einsatz von entsprechenden Entlüftern
- Durchgängige hochwertige Wärmeisolierung
- Schutz der Verrohrung im Außenbereich
- Technikraum (z.B. Platz f
 ür Solarspeicher)
- Alternativ: Einbindung in Bestandsanlage
- ..

PV:

- Fachgerechte Verlegung der Verkabelung
- UV-Beständigkeit Kabel im Aussenbereich
- Blitzschutz beachten /dsgl. Erdung
- Schutz der Verkabelung im Außenbereich
- Unterbringung WR (Innenbereich / Außenbereich)
- Einbindung von Verbrauchern (z.B. Managementsystem)
- Bei Verschattung Optimizer
- Erfüllung von Brandschutzvorgaben
- ٠ ...

Solar und Denkmalschutz:

Sowohl für PV als auch PV gelten ähnliche Vorgaben:

- Vorzeitige Vorsprache bei Behörde
- Gemeinsame Lösungsfindung mit der zuständigen Behörde
- Im Konfliktfall Einbindung des Landesamtes für Denkmalpflege Hessen (LfDH)
- Optische Kriterien
- Ensembleschutz
- Sichtachse / Sichtbarkeit
- Sonderlösungen als Option (z.B. Solarziegel (PV), Indachlösung (ST/PV)
 Farbige Module (PV) ST eingeschränkt

Überprüfung der Anlage (ST / PV) nach der Installation:

ST:

- Wärmeträgerflüssigkeit
- Bei Wärmeträgergemisch (regelmäßige Prüfung der Flüssigkeit)
- Frostschutz
- Isolierung regelmäßig prüfen (z.B. Verbiss)
- Kollektorfläche reinigen (z.B. bei massiver Vogelbelegung)
- Besonderheiten VRK
- Druck des geschlossenen Kreislaufes (Füllstand)
- Regelmäßige Leistungsüberprüfung
- Pumpengeräusche
- Leckageprüfung
- ...

PV:

- Marderverbiss
- Unterbringung WR Überhitzung / Wetterschutz etc.
- Brandschutz
- Monitoring der Anlage
- Kabelprüfung (z.B. UV-Belastung)
- Modulreinigung (z.B. bei Landwirtschftl. Betrieben - Staub)
- Sonderfall Schweineställe
- Regelmäßige Ertragsprüfung
- Prüfung der Kapazität eines evtl. E-Speichers
- •

Kann man PV und ST kombinieren?

- Je nach Auslegung mit Bezug auf Bedarf und gewählte Technologie oftmals möglich
 - Bsp. WP + Wärmespeicher + ST + PV
- o Abhängig von der projektspezifisch Auslegung der Gesamtenergieversorgung
 - Gewichtung auf Stromversorgung (Stromverbraucher, WP, E-Mobilität etc.) PV
 - Gewichtung auf Strom UND Wärme (hier kann die Anwendung von PV & ST Sinn machen)
 - Bestandsgebäude oder Neubau mit hohem Effizienzstatus (Bsp. Passivhaus)
 - Beachte: Flächenkonkurrenz (kann bei kleiner Dachfläche zu einer Entscheidung hin zu einer Technologie führen)
 - ...

Ihr Ansprechpartner

Andreas Wöll

Erneuerbare Energien
Themenfeld Energie –
Beratungsstelle dezentrale
Energieerzeugung

+49 611 95017 8485 andreas.woell@lea-hessen.de solar@lea-hessen.de